
 

Effects of Nitrogen Dioxide on the Various Digital Print 
Technologies: Photographs and Documents 
Daniel Burge, Nino Gordeladze, Jean-Louis Bigourdan, and Douglas Nishimura; Image Permanence Institute, Rochester Institute of 
Technology; Rochester, NY USA 

 

Abstract 
The purpose of this study was to survey the most common 

types of digital print materials to determine their resistance to fade 
or yellowing by nitrogen dioxide (NO2), a pollutant commonly 
found in indoor environments to different degrees. For this 
experiment, various types of inkjet, dye sublimation, and 
electrophotographic prints (including digital press) were exposed 
to 5 ppm NO2 for four weeks. The sensitivities of the digital prints 
were then compared to those of traditionally printed materials 
(black-and-white electrophotographic, color photographic, and 
offset lithographic). Inkjet dye inks and the color dyes in 
traditional photographic prints were the most prone to fade by 
NO2. Traditional photographic, digital press, and offset 
lithographic papers were the most prone to yellowing by NO2. 
Black colorants were fairly robust indicating that most text-only 
documents should be very resistant to NO2 induced fade, though 
the papers may still yellow. Additionally, some inkjet dyes bled 
slightly to severely, depending on the printer and paper 
combination, causing the prints to appear discolored and blurred. 
This could result in loss of detail in images or a reduction in the 
readability of text in documents. This effect has not been reported 
with ozone exposures. 

Introduction 
Examples of the most common digital print materials were 

surveyed for their resistance to fade or yellowing by nitrogen 
dioxide (NO2) a pollutant commonly found in cultural heritage 
institutions [1]. Digital prints already exist within cultural heritage 
collections and are expected to continually increase in quantity. 
Deterioration of these materials in collections has already been 
reported [2]. Collection managers need a general overview of 
which digital print materials are sensitive to NO2 and to what 
degree so that they can take precautionary measures to prevent 
decay. While some work has been done to examine the effects of 
NO2 on individual or small numbers of digital print types, there 
has been no major survey that has incorporated the great variety of 
digital printing technologies, colorants, and papers [3, 4]. 
Additionally, previous work has focused on damage to pictorial 
images. This project includes examining the effects of NO2 on 
text-based documents as well as images. There has also been little 
work to simultaneously examine digitally and traditionally printed 
materials to develop a context of risk for the modern materials. 
Because collection care professionals will likely not be able to 
identify prints in their collections by specific products (printers, 
inks, and papers), the results are presented by printing technology 
categories (e.g. dye sublimation, dye inkjet, etc.) that can be 
differentiated by print identification schema. The audience for this 
study is collection care professionals at cultural heritage 

institutions; however, others, such as professional photographers, 
art galleries, and imaging manufacturers may find the results 
helpful. 

Methods 
The types of digital print materials examined included inkjet 

(IJ), color electrophotographic (EP), dye sublimation (D2T2) and 
dry- and liquid-electrophotographic digital press (DP). Silver-
halide color photographic prints were used as the traditional print 
comparators for the digitally printed photos. Black-and-white 
electrophotographic and offset lithographic prints were used as the 
traditional print comparators for the digitally printed documents. 

 
The inkjet prints were further sub-divided into dye and 

pigment ink prints on both photo and document papers. The inkjet 
photo papers used in the tests included porous-coated plain, 
polymer resin-coated (RC), porous-coated RC, and fine art papers. 
Document inkjet papers included plain office paper, a plain paper 
that had been chemically treated to minimize ink absorption into 
the paper fibers, and a plain paper coated with a special sizing to 
keep the colorant close to the surface to maximize the density and 
brilliance of the printed image. 

 
The dye sublimation papers used were those that matched 

their particular printer models. Chromogenic silver-halide papers 
were used to create the traditional color photographs. Plain papers 
and a paper treated especially to receive color electrophotographic 
toners were used for the electrophotographic prints. Coated glossy 
print stock was used for the offset lithographic and all the digital 
press prints. 

 
Tables 1 and 2 show the types of printers and papers tested as 

well as the number of systems (printer/colorant/paper 
combinations) tested for each type of digital print. 

Table 1. Photo printing systems tested 
Printer Paper No. Tested 
IJ – dye Porous-coated RC 3 
IJ – dye Polymer-coated RC 3 
IJ – dye Porous-coated plain 1 
IJ – pigment Porous-coated RC 2 
IJ – pigment Fine art 3 
D2T2 Dye sublimation 2 
Silver-halide Chromogenic 2 
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Table 2. Document printing systems tested 
Printer Paper No. Tested 
IJ – dye Plain office 3 
IJ – dye IJ office - treated 1 
IJ – dye IJ office - IJ sized 1 
IJ – pigment Plain office 3 
Color EP Plain office 3 
Color EP Color laser 1 
DP – dry toner Coated glossy 2 
DP – liquid toner Coated glossy 1 
B&W EP Plain office 3 
Offset lithography Coated glossy 1 

 
Color step-wedge and text targets were printed in duplicate 

for each system. The color step-wedge targets consisted of cyan, 
magenta, and yellow patches in ten approximately equal intervals 
of low to maximum density (Dmax), neutral patches with 20 
intervals, as well as three non-printed patches (Dmin). The text 
targets consisted of black text on a white field and white text on a 
black field. The font was Times New Roman and the text ranged in 
size from 8 point to 14 point. “Best Photo” and “Photo Enhanced” 
printer settings were selected when available for the inkjet photos. 
Default printer settings were used for printing the inkjet documents 
and all electrophotographic and dye sublimation prints. After 
printing, all samples were left to dry at 21ºC and 50%RH for two 
weeks before testing. All targets were read using a Gretag 
Spectrolino/Spectroscan (no UV filter, 2º observer, D50 
illuminant) for CIELAB L*a*b* both before and after NO2 
exposure. Delta E values were then calculated. Results for all of 
the printers and papers within each printing technology (e.g. inkjet 
dye on polymer-coated photo paper) were averaged to predict that 
technology’s sensitivity to NO2. Text targets were assessed 
visually to determine the smallest readable font after NO2 
exposure. 

 
The NO2-exposure chamber used for the project was custom 

built for IPI by Codori Enterprises. The tanks of 2% NO2 were 
purchased from Air Products. The samples were exposed at 5 ppm 
± 0.25 ppm NO2 for 4 weeks. The temperature and humidity within 
the chamber were held constant at 25°C ± 2°C and 50% RH ± 5%. 
The gas concentration was monitored with an Interscan RM15-
10.0m Analyzer using an Interscan 115-LD10m sensor. A Watlow 
Anafaze CLS216 controller was used to maintain temperature, 
humidity and gas concentration. 

 
If the average level of NO2 concentration in an actual 

collection area (storage or display) was assumed to be 60 ppb [1], 
then the various prints tested could potentially show the damage 
indicated in the tables below after only 6.4 years of use. Longer 
periods of storage or display could, of course, result in even 
greater changes than demonstrated by these experiments. It is 
important to note that these sorts of extrapolations of experimental 
data into real life predictions are problematic as many variables 
will ultimately affect the rate of fading and yellowing of collection 
materials including air exchange rates, enclosures materials and 
designs, and the temperatures and humidities of the storage and 
display environments. 

Results 

Digitally Printed Photos 
Table 3 shows the average delta E values for the maximum 

density cyan, magenta, and yellow patches for each printer and 
paper type for the photo printing systems. Table 4 shows the 
average delta E values for a mid-tone neutral patch (approximately 
70% of Dmax so as to include the three primary colors plus black 
inks) and the maximum density neutral patch for each printer and 
paper type. While most grey tones in color prints are mixtures of 
cyan, magenta, yellow, and black colorants, the maximum density 
black is often black colorant only. The exceptions are the dye 
sublimation and silver-halide color prints which include only cyan, 
magenta, and yellow and contain no black. Table 5 shows the 
average delta E values for each technology for the minimum 
density (white) areas of the print. 

Table 3. Effect of NO2 on delta E of cyan, magenta, and yellow 
colorants on the photo papers 

Printer Paper C M Y 
IJ – dye Porous-coated RC 2 7 5 
IJ – dye Polymer-coated RC 5 8 1 
IJ – dye Porous-coated plain 10 31 8 
IJ – pigment Porous-coated RC 1 2 1 
IJ – pigment Fine art 2 2 0 
D2T2 Dye sublimation 6 2 3 
Silver-halide Chromogenic 14 14 4 

Table 4. Effect of NO2 on delta E of mid-tone grey and maximum 
black on the photo papers 

Printer Paper Dmid Dmax 
IJ – dye Porous-coated RC 5 2 
IJ – dye Polymer-coated RC 4 0 
IJ – dye Porous-coated plain 20 20 
IJ – pigment Porous-coated RC 1 1 
IJ – pigment Fine art 0 0 
D2T2 Dye sublimation 4 2 
Silver-halide Chromogenic 12 11 

Table 5. Effect of NO2 on delta E of white areas of the photo 
papers 

Printer Paper Dmin 
IJ – dye Porous-coated RC 3 
IJ – dye Polymer-coated RC 1 
IJ – dye Porous-coated plain 4 
IJ – pigment Porous-coated RC 1 
IJ – pigment Fine art 2 
D2T2 Dye sublimation 0 
Silver-halide Chromogenic 9 

 
All of the digitally printed photos showed some degree of 

fade (delta E > 2) except the pigment inkjet prints. However, with 
the exception of the inkjet dye on porous-coated plain paper, all of 
the digitally printed photos were more resistant to fade than the 
traditional photographic print materials. Additionally, all of the 
digitally printed photographs were significantly more resistant to 
yellowing than the traditional photographs. 
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Digitally Printed Documents 
Table 6 shows the average delta E values for the maximum 

density cyan, magenta, and yellow patches for each printer and 
paper type for the document printing systems. Table 7 shows the 
average delta E values for a mid-tone neutral patch and the 
maximum density neutral patch for each printer and paper type. 
Table 8 shows the average delta E values for each technology for 
the minimum density (white) areas of the print. 

Table 6. Effect of NO2 on delta E of cyan, magenta, and yellow 
colorants on the document papers 

Printer Paper C M Y 
IJ – Dye Plain office 4 4 2 
IJ – Dye IJ office - treated 4 5 2 
IJ – Dye IJ office - IJ sized 14 22 1 
IJ – Pigment Plain office 1 2 0 
Color EP Plain office 6 5 5 
Color EP Color laser 4 4 2 
DP – Dry Toner Coated glossy 6 9 1 
DP – Liquid Toner Coated glossy 7 5 1 
Offset Litho Coated glossy 5 3 1 

Table 7. Effect of NO2 on delta E of mid-tone grey and maximum 
black on the document papers 

Printer Paper Dmid Dmax 
IJ – Dye Plain office 1 1 
IJ – Dye IJ office - treated 1 0 
IJ – Dye IJ office - IJ sized 6 0 
IJ – Pigment Plain office 1 0 
Color EP Plain office 4 2 
Color EP Color laser 4 2 
DP – Dry Toner Coated glossy 3 2 
DP – Liquid Toner Coated glossy 2 0 
B&W EP Plain office 1 1 
Offset Litho Coated glossy 1 0 

Table 8. Effect of NO2 on delta E of white areas of the document 
papers 

Printer Paper Dmin 
IJ – Dye Plain office 1 
IJ – Dye IJ office - treated 1 
IJ – Dye IJ office - IJ sized 5 
IJ – Pigment Plain office 1 
Color EP Plain office 2 
Color EP Color laser 4 
DP – Dry Toner Coated glossy 7 
DP – Liquid Toner Coated glossy 8 
B&W EP Plain office 2 
Offset Litho Coated glossy 7 

 
With the exception of pigment inkjet documents, all of the 

digitally printed documents showed some degree of fade of the 
cyan, magenta, and yellow colorants. The black colorants, 
however, were considerably more robust and faded very little, if at 
all. As stated above, this is probably due to the fact that most grey 
tones in color digital prints are made up of cyan, magenta, yellow, 
and black colorants together. The maximum density black, 

however, is often black colorant only, and it is usually a pigment 
colorant even for many dye inkjet systems. Because of this, the 
text was not compromised and all samples were still readable after 
NO2 exposure. All of the papers used in production printing, either 
for digital presses or traditional offset lithography were prone to 
yellowing. 

 
In addition to fading and yellowing, the magenta ink bled in 

dye inkjet photos printed on the porous-coated plain paper and on 
one of the porous-coated photo papers. Bleed is sometimes seen 
when dye inkjet prints are exposed to high humidity; however, 
these samples were exposed in a pollution chamber held constant 
at 25°C ± 2°C and 50% RH ± 5%. It is not known why the ink 
bled; however, many inks are dependent on opposing charges 
between the ink and the paper to adhere properly. It is possible that 
the NO2 dissolved in the natural water content of the paper resulted 
in the formation of nitric and nitrous acids. This alteration in the 
pH of the system might cause the ink and paper coating to 
disassociate. Photomicrographs illustrating ink bleed are shown in 
Figures 1 and 2 below. The print was dye inkjet on porous-coated 
plain paper. 

Figure 1. Unexposed text 
 

Figure 2. Text exposed to NO2 

Conclusions 
From the data the following conclusions were drawn: 
• Dye inkjet prints on porous-coated plain papers and 

inkjet-sized office papers as well as the dyes in 
traditional color photographic papers were the most 
sensitive to fade by NO2. 
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• The traditional photographic, digital press, and offset 
lithographic papers were the most prone to yellowing by 
NO2. 

• Black colorants were fairly robust, so text-only 
documents should be very resistant to NO2 induced fade, 
though the papers may yellow. 

• Exposure of some digital prints may result in colorant 
bleed which is potentially more objectionable than fade 
or yellowing as image detail may be lost or text 
readability diminished. Further research into this 
phenomenon is highly recommended. 
 

This project only examined the effects of NO2 on digitally 
printed materials; it did not take into consideration other decay 
forces such as other atmospheric pollutants (i.e. ozone), 
temperature, humidity, light, etc. Best practices for preservation of 
digitally printed materials should take into consideration the 
potential for damage by all of these forces. 
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